Math 241 Sample Problems for Exam 1

Question 1 Don't forget cylindrical and spherical coordinates and quadric surfaces.
Question 2 Let $f(x, y)=x \sin (y / x)$. Find the partial derivatives: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial y \partial x}$
Question 3 Find and sketch the domain of the function $f(x, y)=\frac{5}{\sqrt{10-2 y^{2}-x^{2}}}$.
Question 4 Evaluate the following limit:

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{\sqrt{x+y}-\sqrt{3}}{x+y-3}
$$

Question 5 Show that the following limit does not exist as $(x, y) \rightarrow(0,0)$ by considering different paths of approach.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y+y^{2}}{x^{4}+y^{2}}
$$

Question 6 Let $w=f(u, v)$ be a function whose derivatives of all orders exist. Suppose that $\frac{\partial^{2} f}{\partial u^{2}}(0,2)=0$, $\frac{\partial^{2} f}{\partial u^{2}}(3,0)=-3, \frac{\partial^{2} f}{\partial u \partial v}(0,2)=2, \frac{\partial^{2} f}{\partial u \partial v}(3,0)=3, \frac{\partial^{2} f}{\partial v^{2}}(0,2)=1, \frac{\partial^{2} f}{\partial v^{2}}(3,0)=-1$. If $u=y+e^{2 x}$ and $v=x y$, what is the value of $\frac{\partial^{2} w}{\partial y^{2}}$ evaluated at the point $(x, y)=(0,2)$.

Question 7 Find the direction in which $f(x, y)=x^{2}+\cos x y$ increases most rapidly at the point $(1, \pi / 2)$. What is the rate at which f changes in that direction? What is the equation of the tangent plane at the point $(1, \pi / 2)$?

Question 8 Find the critical points of the function

$$
f(x, y)=x^{4}-x^{2} y+\frac{3}{4} y^{2}-2 y+5
$$

and determine all relative maximum, relative minimum, and saddle points.
Question 9 A Lagrange multipliers problem

